Đề thi thử Toán THPTQG 2019 lần 2 trường THPT chuyên Đại học Vinh – Nghệ An
Vào chiều Chủ nhật, ngày 31 tháng 3 năm 2019, trường THPT chuyên Đại học Vinh tại Nghệ An đã tổ chức kỳ thi thử THPT Quốc gia môn Toán lần thứ 2. Đây là một cơ hội tuyệt vời cho các bạn học sinh trên khắp cả nước được trải nghiệm và thử thách bản thân. Kỳ thi này đã nổi tiếng trong cộng đồng giáo viên và học sinh yêu thích môn Toán nhờ vào chất lượng đề thi được chuẩn bị công phu và đầu tư kỹ lưỡng. Các em học sinh, dù đang theo học ở bất kỳ trường nào, đều có thể đăng ký tham gia để kiểm tra năng lực và làm quen với không khí thi cử quan trọng sắp tới.
Trân trọng,
Đội ngũ hdgmvietnam.org
Trích dẫn Đề thi thử Toán THPTQG 2019 lần 2 trường THPT chuyên Đại học Vinh – Nghệ An
Câu 1: Trong hình vẽ bên, điểm $P$ biểu diễn số phức $z_1$, điểm $Q$ biểu diễn số phức $z_2$. Tìm số phức $z=z_1+z_2$.
A. $1+3 i$.
B. $-3+i$.
C. $-1+2 i$.
D. $2+i$.
Câu 2: Giả sử $f(x)$ và $g(x)$ là các hàm số bất kỳ liên tục trên $\mathbb{R}$ và $a, b, c$ là các số thực. Mệnh đề nào sau đây sai?
A. $\int_a^b f(x) d x+\int_b^c f(x) d x+\int_c^a f(x) d x=0$.
B. $\int_a^b c f(x) d x=c \int_a^b f(x) d x$.
C. $\int_a^b f(x) g(x) d x=\int_a^b f(x) d x . \int_a^b g(x) d x$.
D. $\int_a^b(f(x)-g(x)) d x+\int_a^b g(x) d x=\int_a^b f(x) d x$.
Câu 4: Cho cấp số cộng $\left(u_n\right)$, có $u_1=-2, u_4=4$. Số hạng $u_6$ là
A. 8 .
B. 6 .
C. 10 .
D. 12 .
Câu 5: Trong không gian $O x y z$, cho đường thẳng $\Delta$ vuông góc với mặt phẳng $(\alpha): x+2 z+3=0$. Một véctơ chỉ phương của $\Delta$ là
A. $\vec{b}(2 ;-1 ; 0)$.
B. $\vec{v}(1 ; 2 ; 3)$.
C. $\vec{a}(1 ; 0 ; 2)$.
D. $\vec{u}(2 ; 0 ;-1)$.
Câu 6: Cho khối hộp $A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ có thể tích bằng 1 . Thể tích của khối tứ diện $A B^{\prime} C^{\prime} D^{\prime}$ bằng
A. $\frac{1}{3}$.
B. $\frac{1}{6}$.
C. $\frac{1}{2}$.
D. $\frac{1}{12}$.
Câu 7: Tất cả các nguyên hàm của hàm số $f(x)=\sin 5 x$ là
A. $\frac{1}{5} \cos 5 x+C$.
B. $\cos 5 x+C$.
C. $-\cos 5 x+C$.
D. $-\frac{1}{5} \cos 5 x+C$.
Câu 10: Giả sử $a, b$ là các số thực dương tuỷ ý thoả mãn $a^2 b^3=4^4$. Mệnh đề nào sau đây đúng ?
A. $2 \log _2 a-3 \log _2 b=8$.
B. $2 \log _2 a+3 \log _2 b=8$.
C. $2 \log _2 a+3 \log _2 b=4$.
D. $2 \log _2 a-3 \log _2 b=4$.
Câu 11: Trong không gian $O x y z$, mặt phẳng nào trong các mặt phẳng sau song song với trục $O z$ ?
A. $(\alpha): z=0$.
B. $(P): x+y=0$.
C. $(Q): x+11 y+1=0$.
D. $(\beta): z=1$.
Câu 12: Nghiệm của phương trình $2^{x-3}=\frac{1}{2}$ là
A. 0 .
B. 2 .
C. -1 .
D. 1 .
Câu 13: Mệnh đề nào sau đây sai ?
A. Số tập con có 4 phần tử của tập 6 phần tử là $C_6^4$.
B. Số cách xếp 4 quyển sách vào 4 trong 6 vị trí ở trên giá là $A_6^4$.
C. Số cách chọn và xếp thứ tự 4 học sinh từ nhóm 6 học $\sinh$ là $C_6^4$.
D. Số cách xếp 4 quyển sách trong 6 quyển sách vào 4 vị trí trên giá là $A_6^4$.
Câu 14: Cho $F(x)$ là nguyên hàm của $f(x)=\frac{1}{\sqrt{x+2}}$ thoả mãn $F(2)=4$. Giá trị $F(-1)$ bằng
A. $\sqrt{3}$.
B. 1 .
C. $2 \sqrt{3}$.
D. 2 .
Câu 15: Biết tập hợp nghiệm của bất phương trình $2^x<3-\frac{2}{2^x}$ là khoảng $(a ; b)$. Giá trị $a+b$ bằng
A. 3 .
B. 2 .
C. 0 .
D. 1 .
Đề thi thử Toán THPTQG 2019 lần 2 trường THPT chuyên Đại học Vinh – Nghệ An
Tải tài liệu