Đề thi thử Toán THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 4
| | |

Đề thi thử Toán THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 4 (có đáp án)

Vào ngày 02 tháng 06 năm 2019, trường THPT Ngô Quyền ở Hải Phòng đã tổ chức kỳ thi thử THPT Quốc gia môn Toán lần thứ 4 cho học sinh khối 12. Đây là cơ hội quý giá để các em “diễn tập” trước kỳ thi chính thức. Qua đó, các bạn có thể đánh giá năng lực, phát hiện điểm mạnh và những kiến thức cần bổ sung. Kỳ thi thử này không chỉ giúp học sinh ôn luyện kiến thức mà còn tạo không khí thi cử thực tế, giúp các em tự tin và sẵn sàng cho kỳ thi quan trọng sắp tới. Hãy cùng khám phá đề thi thử này để chuẩn bị tốt nhất nhé!

Trân trọng,
Đội ngũ hdgmvietnam.org

Trích dẫn Đề thi thử Toán THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 4

Câu 1: Họ nguyên hàm của hàm số $f(x)=e^x+2 \sqrt{x}$ là
A. $e^x+\frac{2}{3} x^{\frac{3}{2}}+C$
B. $e^x+\frac{4}{3} x^{\frac{3}{2}}+C$.
C. $e^x+\frac{2}{3} x^{\frac{1}{2}}+C$.
D. $e^x+\frac{1}{2} x^{\frac{1}{2}}+C$.

Câu 2: Số nghiệm của phương trình $\ln \left(x^2-3 x+2\right)=5$ là
A. 4 .
B. 1 .
C. 2 .
D. 0 .

Câu 3: Trong không gian $O x y z$, dường thẳng $d: \frac{x+1}{1}=\frac{y+2}{-2}=\frac{z+3}{3}$ vuông góc với mặt phẳng nào dưới đày?
A. $x+y-2 z=0$.
B. $x+2 y+3 z=0$.
C. $x+2 y-6 z+6=0$.
D. $x-2 y+3 z=0$.

Câu 4: Trong không gian $O x y z$, cho hai điểm $A(1 ;-1 ; 1), B(-2 ; 3 ;-2)$. Khi đó $|\overrightarrow{A B}|$ bằng
A. $\sqrt{42}$.
B. 9 .
C. $\sqrt{34}$.
D. 8 .

Câu 5: Hệ số của $x^3$ trong khai triền của $(1+x)^4$ bằng
A. 6 .
B. 2 .
C. 12 .
D. 4 .

Câu 6: $\left|\frac{1}{2-i}+(1-i) \overline{(2 i+1)}\right|$ bằng
A. $\frac{\sqrt{305}}{5}$.
B. $\frac{\sqrt{205}}{5}$.
C. $\sqrt{15}$.
D. 12 .

Câu 7: Diện tích toàn phần của hình lập phương cạnh $4 a$ bằng
A. $54 a^2$.
B. $6 a^2$.
C. $18 a^2$.
D. $96 a^2$.

Câu 11: Vơi $a, b$ là hai số thực dương tùy ý, $\ln (2 \sqrt[3]{a} \sqrt{b})$ bằng
A. $\ln 2+\frac{1}{3} \ln a+\frac{1}{2} \ln b$.
B. $\ln 2+3 \ln a+2 \ln b$.
C. $\ln 2+9 \ln a+2 \ln b$.
D. $\frac{1}{2} \ln 2+\sqrt{3} \ln a+\sqrt{2} \ln b$.

Câu 12: Cho cấp số cộng $\left(u_n\right)$ có số hạng đầu $u_1=-1$ và công sai $d=3$. Số hạng $u_3$ bằng
A. -12 .
B. 2 .
C. 5 .
D. 6 .

Câu 13: Gọi $M$ và $m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất cùa hàm số $y=\frac{1}{3 x+7}$ trên đoạn $[-1 ; 3]$. Giá trị của $M-m$ bằng
A. $\frac{8}{33}$.
B. $\frac{3}{16}$.
C. $\frac{1}{7}$.
D. 7 .

Câu 14: Diện tích mặt cầu có bán kính $4 a$ bằng
A. $16 \pi a^2$.
B. $64 \pi a^2$.
C. $12 \pi a^2$.
D. $4 \pi a^2$.

Câu 15: Trong không gian $O x y z$, mặt phẳng $(O x z)$ có phương trình là
A. $y-z=0$.
B. $x=0$.
C. $y+z=0$.
D. $y=0$.

Câu 16: Số phức có phần ào bằng mô đun và bằng 3 là
A. $3+3 i$.
B. $3 i$.
C. 4-i.
D. 3 .

Câu 18: Hàm số $f(x)=\log _3\left(x-\frac{1}{x}\right)$ có đạo hàm là
A. $\frac{1+\frac{1}{x^2}}{\left(x-\frac{1}{x}\right) \ln 3}$.
B. $\frac{1+\frac{1}{x^2}}{\left(x-\frac{1}{x}\right)} \ln 3$.
C. $\frac{1+\frac{1}{x^2}}{\left(x-\frac{1}{x}\right)^2 \ln 3}$.
D. $\frac{1+\frac{1}{x^2}}{\left(x-\frac{1}{x}\right)^2} \ln 3$.

Câu 22: Trong không gian $O x y z$, gọi $\alpha$ là góc giữa hai mặt phằng $(P): \frac{1}{2} x-y+z+2=0$ và $(Q): x+y+z-1=0$. Khi đó cos $\alpha$ bằng
A. $\frac{1}{9}$.
B. $\frac{1}{3}$.
C. $\frac{\sqrt{3}}{9}$.
D. $\frac{\sqrt{3}}{3}$.

Câu 23: Trong không gian $O x y z$, cho diểm $I(-1 ; 1 ;-1)$. Phương trình mặt cầu có tâm $I$ và tiếp xúc với mặt phẳng $(O x y)$ là
A. $(x-1)^2+(y+1)^2+(z-1)^2=3$.
B. $(x-1)^2+(y+1)^2+(z-1)^2=1$.
C. $(x-1)^2+(y+1)^2+(z-1)^2=\sqrt{3}$.
D. $(x+1)^2+(y-1)^2+(z+1)^2=1$.

Câu 24: Đặt $\log _{\sqrt{2}} 3=a$, khi đó $\log _{G 4} 9$ bằng
A. $\frac{a}{6}$.
B. $\frac{6}{a}$.
C. $\frac{2}{a}$.
D. $2 a$.

Câu 25: Kí hiệu $z_1, z_2$ là hai nghiệm phức của phương trình $2 z^2-z+3=0$. Giá trị của $\left\|z_1|-| z_2\right\|$ bằng
A. 4.
B. 2 .
C. 3.
D. 0 .

Câu 26: Cho khối chóp tứ giác đều có tất cà các cạnh đều bằng $6 a$. Thể tích của khối chóp đã cho bằng
A. $36 \sqrt{2} a^3$.
B. $9 a^3$.
C. $2 \sqrt{2} a^3$.
D. $12 \sqrt{2} a^3$.

Đề thi thử Toán THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 4 kèm đáp án

Tải tài liệu

5/5 - (1 vote)

Similar Posts

Để Lại Bình Luận

Địa chỉ email của bạn sẽ không được công bố. Các trường bắt buộc được đánh dấu *