Đề KSCL Toán thi THPT Quốc gia 2019 lần 1 trường chuyên Thoại Ngọc Hầu – An Giang
| | |

Đề KSCL Toán thi THPT Quốc gia 2019 lần 1 trường chuyên Thoại Ngọc Hầu – An Giang

Đội ngũ hdgmvietnam.org hân hạnh giới thiệu đến quý thầy cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng môn Toán, kỳ thi THPT Quốc gia 2019 lần 1 của trường chuyên Thoại Ngọc Hầu, An Giang. Đề thi này có mã số 157, bao gồm 50 câu hỏi trắc nghiệm khách quan, được thiết kế với thời gian làm bài là 90 phút. Mục tiêu của đề thi không chỉ là đánh giá năng lực học sinh mà còn giúp các em làm quen với cấu trúc đề thi chính thức, từ đó có thể định hướng ôn tập hiệu quả hơn. Đề thi đi kèm với đáp án chi tiết, tạo điều kiện thuận lợi cho việc tự học và ôn luyện. Chúng tôi hy vọng rằng tài liệu này sẽ là nguồn tham khảo hữu ích, hỗ trợ các em trong hành trình chinh phục kỳ thi quan trọng sắp tới.

Trân trọng,
Đội ngũ hdgmvietnam.org

Trích dẫn Đề KSCL Toán thi THPT Quốc gia 2019 lần 1 trường chuyên Thoại Ngọc Hầu – An Giang

Câu 1. Cho các mệnh đề sau:
(I). Cơ số của lôgarit phải là số nguyên dương.
(II). Chi số thực dương mới có lôgarit.
(III). $\ln (A+B)=\ln A+\ln B$ với mọi $A>0, B>0$.
(IV) $\log _a b \cdot \log _b c \cdot \log _c a=1$, với mọi $a, b, c \in \mathbb{R}$.
Số mệnh đề đúng là:
A. 1 .
B. 3 .
C. 4 .
D. 2 .

Câu 5. Hàm số nào có đồ thị nhận đường thẳng $x=2$ làm đường tiệm cận:
A. $y=\frac{1}{x+1}$.
B. $y=\frac{5 x}{2-x}$
C. $y=x-2+\frac{1}{x+1}$.
D. $y=\frac{2}{x+2}$.

Câu 6. Số đường tiệm cận của đồ thị hàm số $y=\frac{x+\sqrt{x^2+1}}{x+1}$ là
A. 1
B. 3
C. 2
D. 0

Câu 7. Tính bình phương tổng các nghiệm của phương trình $3 \sqrt{\log _2 x}-\log _2 4 x=0$.
A. 5 .
B. 324 .
C. 9 .
D. 260 .

Câu 10. Đồ thị sau đây là của hàm số nào?
A. $y=-x^3-3 x^2-2$.
B. $y=x^3+3 x^2-2$.
C. $y=-x^3+3 x^2-2$.
D. $y=x^3-3 x^2-2$.

Câu 11. Giá trị của biểu thức $P=\log _a(a \cdot \sqrt[3]{a \sqrt{a}})$ bằng:
A. 3 .
B. $\frac{3}{2}$.
C. $\frac{1}{3}$.
D. $\frac{2}{3}$.

Câu 16. Cho hàm số $y=f(x)$ có đạo hàm trên $(a ; b)$. Phát biểu nào sau đây là sai?
A. $f^{\prime}(x)x_2 \Leftrightarrow f\left(x_1\right)<f\left(x_2\right)$.
D. Hàm số $y=f(x)$ gọi là nghịch biến trên $(a ; b)$ khi và chỉ khi $f^{\prime}(x) \leq 0, \forall x \in(a ; b)$.

Câu 17. Cho $\log _a b=\sqrt{3}$. Tính giá trị của biểu thức $P=\log _{\frac{\sqrt{b}}{a}} \frac{\sqrt{b}}{\sqrt{a}}$
A. $P=\frac{\sqrt{3}-1}{\sqrt{3}-2}$
B. $P=\sqrt{3}-1$
C. $P=\frac{\sqrt{3}-1}{\sqrt{3}+2}$
D. $P=\sqrt{3}+1$

Câu 18. Nếu $3^{2 x}+9=10.3^x$ thì giá trị của $x^2+1$ bằng:
A. Là 1 và 5 .
B. Chil là 5 .
C. Là 0 và 2 .
D. Chỉ là 1 .

Câu 19. Một tổ có 10 học sinh gồm 6 nam và 4 nữ. Giáo viên cần chọn ngẫu nhiên hai bạn hát song ca. Tính xác suất $P$ dể hai học sinh được chọn là một cặp song ca nam nữ.
A. $P=\frac{4}{15}$.
B. $P=\frac{8}{15}$.
C. $P=\frac{12}{19}$.
D. $P=\frac{2}{9}$.

Câu 20. Cho hình chóp $S . A B C$ có đáy $A B C$ là tam giác đều cạnh $2 a$, tam giác $S A B$ là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính thể tích khối chóp $S . A B C$.
A. $V=a^3$.
B. $V=3 a^3$.
C. $V=\frac{3 a^3}{2}$.
D. $V=\frac{a^3}{2}$.

Đề KSCL Toán thi THPT Quốc gia 2019 lần 1 trường chuyên Thoại Ngọc Hầu – An Giang

Tải tài liệu

Rate this post

Similar Posts

Để Lại Bình Luận

Địa chỉ email của bạn sẽ không được công bố. Các trường bắt buộc được đánh dấu *