Đề khảo sát chất lượng Toán 12 năm 2023 sở GD&ĐT Cần Thơ
| | |

Đề khảo sát chất lượng Toán 12 năm 2023 sở GD&ĐT Cần Thơ

Kính gửi quý đồng nghiệp và các em học sinh lớp 12 thân mến,

Nhằm đánh giá chất lượng dạy và học môn Toán cho khối lớp 12 trong năm học 2022 – 2023, đồng thời hỗ trợ các em học sinh chuẩn bị tốt nhất cho kỳ thi tốt nghiệp THPT năm 2023 môn Toán, đội ngũ hdgmvietnam.org xin được giới thiệu đề khảo sát chất lượng học sinh môn Toán 12 do Sở Giáo dục và Đào tạo thành phố Cần Thơ soạn thảo.

Đề khảo sát này được thiết kế dựa trên chuẩn kiến thức, kỹ năng cốt lõi của chương trình giáo dục phổ thông hiện hành, nhằm đánh giá toàn diện năng lực của học sinh trong việc vận dụng kiến thức lý thuyết vào giải quyết các tình huống thực tiễn. Nội dung đề thi bao gồm các dạng bài tập trắc nghiệm và tự luận, đảm bảo tính khoa học, khách quan và công bằng.

Việc tham gia làm đề khảo sát này sẽ giúp các em học sinh có cơ hội:

1. Đánh giá mức độ nắm vững kiến thức và kỹ năng môn Toán của bản thân.
2. Xác định những điểm mạnh, điểm yếu cần khắc phục trong quá trình ôn luyện.
3. Làm quen với định dạng và cấu trúc của đề thi tốt nghiệp THPT môn Toán.
4. Rèn luyện kỹ năng quản lý thời gian và áp lực trong thi cử.

Chúng tôi hy vọng rằng đề khảo sát này sẽ là công cụ hữu ích để quý thầy, cô và các em học sinh chuẩn bị tốt nhất cho kỳ thi quan trọng sắp tới.

Trân trọng,
Đội ngũ hdgmvietnam.org

Trích dẫn Đề khảo sát chất lượng Toán 12 năm 2023 sở GD&ĐT Cần Thơ

Câu 1. Trên đoạn $[-1 ; 3]$, giá trị nhỏ nhất của hàm số $y=-x^4+4 x^2-3$ bằng
A. 1 .
B. -48 .
C. -50 .
D. 0 .

Câu 2. Cho hàm số $f(x)=x^2-\cos x$. Khẳng định nào dưới đây đúng?
A. $\int f(x) \mathrm{d} x=2 x-\sin x+C$.
B. $\int f(x) \mathrm{d} x=\frac{x^3}{3}+\sin x+C$.
C. $\int f(x) \mathrm{d} x=\frac{x^3}{3}-\sin x+C$.
D. $\int f(x) \mathrm{d} x=2 x+\sin x+C$.

Câu 3. Cho hàm số $y=\sqrt{4-x^2}$. Khẳng định nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng $(-\infty ; 0)$.
B. Hàm số đồng biến trên khoảng $(-2 ; 0)$.
C. Hàm số nghịch biến trên khoảng $(0 ;+\infty)$.
D. Hàm số nghịch biến trên khoàng $(-2 ; 2)$.

Câu 4. Tập xác định của hàm số $y=(x-1)^{-\frac{5}{2}}$ là
A. $(1 ;+\infty)$.
B. $\mathbb{R} \backslash\{1\}$.
C. $\mathbb{R}$.
D. $(-\infty ; 1)$.

Câu 5. Cho khối chóp có diện tích đáy $B=3 a^2$ và chiều cao $h=2 a$. Thể tích của khối chóp đã cho bằng
A. $6 a^3$.
B. $a^3$.
C. $2 a^3$.
D. $3 a^3$.

Câu 6. Cho hai số phức $z_1=-1+2 i$ và $z_2=2+3 i$. Phần thực của số phức $z_1 z_2$ bằng
A. 1 .
B. 6 .
C. -8 .
D. -2 .

Câu 9. Cho hàm số $y=f(x)$ có đạo hàm là $f^{\prime}(x)=3 x^2-2, \forall x \in \mathbb{R}$ và $f(1)=0$. Biết $F(x)$ là một nguyên hàm cúa $f(x)$ thỏa mãn $F(0)=2$. Giá trị $F(2)$ bằng
A. 6 .
B. 4 .
C. 16 .
D. 8 .

Câu 10. Với $a$ là số thực dương tuỳ ý, $\log _5(5 a)$ bằng
A. $1+\log _5 a$.
B. $1-\log _5 a$.
C. $5 \log _5 a$.
D. $5+\log _5 a$.

Câu 11. Nếu $\int_1^2 f(x) \mathrm{d} x=2$ thì $\int_1^2[f(x)+2 x] \mathrm{d} x$ bằng
A. 4 .
B. 5 .
C. 3 .
D. 1 .

Câu 12. Nghiệm của phương trình $\log _5(3 x-1)=3$ là
A. $x=42$.
B. $x=\frac{16}{3}$.
C. $x=2$.
D. $x=\frac{7}{3}$.

Câu 13. Trong không gian $O x y z$, mặt phẳng $(P): x+2 y+3=0$ có một vectơ pháp tuyến là
A. $\vec{n}_3=(1 ; 2 ; 0)$.
B. $\vec{n}_1=(1 ; 0 ; 3)$.
C. $\vec{n}_4=(1 ; 2 ; 3)$.
D. $\vec{n}_2=(1 ; 0 ; 2)$.

Câu 14. Trong không gian $O x y z$, cho hai vectơ $\vec{a}=(2 ; 3 ; 2)$ và $\vec{b}=(1 ; 1 ;-1)$. Vectơ $\vec{a}-\vec{b}$ có tọa độ là
A. $(1 ; 2 ; 3)$.
B. $(3 ; 4 ; 1)$.
C. $(1 ; 2 ; 5)$.
D. $(3 ; 5 ; 1)$.

Câu 15. Cho hình lăng trụ tam giác đều $A B C \cdot A^{\prime} B^{\prime} C^{\prime}$ có cạnh đáy bằng $a$ và cạnh bên bằng $2 a$. Thể tích cùa khối lăng trụ $A B C . A^{\prime} B^{\prime} C^{\prime}$ bằng
A. $\frac{\sqrt{3}}{3} a^3$.
B. $\frac{\sqrt{3}}{2} a^3$.
C. $\frac{\sqrt{3}}{6} a^3$.
D. $\frac{\sqrt{3}}{4} a^3$.

Câu 16. Cho $I=\int_0^1 x\left(x^2+1\right)^3 \mathrm{~d} x$. Nếu đặt $u=x^2+1$ thì $I$ bằng
A. $\frac{1}{2} \int_1^2 u^3 \mathrm{~d} u$.
B. $\frac{1}{2} \int_0^1 u^3 \mathrm{~d} u$.
C. $\int_0^1 u^3 \mathrm{~d} u$.
D. $\int_1^2 u^3 \mathrm{~d} u$.

Câu 17. Có bao nhiêu cách xếp 8 học sinh thành một hàng dọc?
A. 1
B. 64 ,
C. 40320 .
D. 8 .

Câu 18. Cho hàm số $f(x)=\mathrm{e}^{2 x}$. Khẳng định nào sau đây đúng?
A. $\int f(x) \mathrm{d} x=2 x \cdot \mathrm{e}^{2 x}+C$.
B. $\int f(x) \mathrm{d} x=\frac{1}{2} \mathrm{e}^{2 x}+C$.
C. $\int f(x) \mathrm{d} x=\mathrm{e}^{2 x}+C$.
D. $\int f(x) \mathrm{d} x=2 \mathrm{e}^{2 \mathrm{x}}+C$.

Câu 19. Trong không gian $O x y z$, cho điểm $A(1 ; 2 ; 3)$ và mặt phẳng $(\alpha): 4 x+3 y-7 z+1=0$. Đường thẳng đi qua điểm $A$ và vuông góc với $(\alpha)$ có phương trình là
A. $\left\{\begin{array}{l}x=-1+8 t \\ y=-2+6 t \\ z=-3-14 t\end{array}\right.$
B. $\left\{\begin{array}{l}x=-1+4 t \\ y=-2+3 t \\ z=-3-7 t\end{array}\right.$
C. $\left\{\begin{array}{l}x=1+3 t \\ y=2-4 t \\ z=3-7 t\end{array}\right.$
D. $\left\{\begin{array}{l}x=1+4 t \\ y=2+3 t \\ z=3-7 t\end{array}\right.$

Đề khảo sát chất lượng Toán 12 năm 2023 sở GD&ĐT Cần Thơ

Tải tài liệu

Rate this post

Similar Posts

Để Lại Bình Luận

Địa chỉ email của bạn sẽ không được công bố. Các trường bắt buộc được đánh dấu *